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A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test 
problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic 
mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a 
finite difference method and a collocation method, are tested and intercompared. Sample 
Rossby wave calculations with and without advection are performed with constant 
stratification and two levels of nonlinearity, one weaker than and one typical of real ocean 
flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the 
model is tabulated as a function of the computational parameters and stability limits set; 
typically, errors were controlled between 1% and 10% RMS after two wave periods. Further 
Rossby wave tests with realistic stratification and wave parameters chosen to mimic real 
ocean conditions were performed to determine computational parameters for use with real and 
simulated data. Finally, a prototype calculation with quasiturbulent simulated data was 
performed successfully, which demonstrates the practicality of the model for scientific use. 

1, INTRODUCTION 

Models of oceanic mesoscale processes have played, and will continue to play, a 
key role in our understanding of mid-ocean dynamics. (See, e.g., [7]). Oceanic 
mesoscale variability is generally defined as variability on spatial scales of tens to 
hundreds of kilometers, and on temporal scales from weeks to months. Motions on 
this scale are the oceanic analogue of weather-the dynamic analogue of the 
atmospheric “synoptic” scale. The circulatory systems that correspond to the familiar 
highs and lows in meteorology are the mesoscale eddies. For mid-ocean eddies, 
intensive composite data sets have been constructed from observations taken during 
the 1970s by the large experimental program MODE [ 141 and POLYMODE 1201. 

A model with open boundary conditions is required for forecast studies with real 
data and for idealized numerical experiments to investigate importation of energy and 
scales from remote regions. The development of a barotropic open ocean model by 
the Harvard Open Ocean Modeling Group was reported in [8], in which problems of 
open ocean modeling of mesoscale currents were discussed in a broader context. The 
results of dynamical forecast experiments with this model are reported by Robinson 
and Haidvogel [22] who also present a detailed discussion of the philosophy of 
limited area modeling of the oceanic mesoscale. Real ocean flows are known to be 
significantly baroclinic; statistically, the ratio of barotropic to baroclinic kinetic 
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energy has been estimated at approximately 0.5 [ 111. This paper concerns the 
extension of the earlier barotropic modeling work to a baroclinic quasigeostrophic 
forecast model. With this step, the model becomes capable of direct application to the 
analysis of the MODE/POLYMODE data base, and to other such data sets available 
now or in the future in arbitrary open ocean regions. 

Other baroclinic eddy-resolving models have been developed during the past ten 
years. Robinson et al. [21] present a review of the basin and large scale general 
circulation models, including those with sufftciently fine resolution to reveal 
mesoscale processes. Such models are known as eddy-resolving general circulation 
models (EGCMs). Haidvogel [7] discusses the so-called process or regional models, 
which are most suitable for the dynamic analysis of intensive data sets. Bretherton 
and Karweit [3] have constructed a baroclinic model with periodic boundary 
conditions for process studies to the MODE data [18], which was subsequently 
applied to important studies of dynamic balances related to the design and analysis of 
aspects of POLYMODE [ 17). The imposition of periodic boundary conditions limits 
this type of model essentially to statistical comparisons. 

Regional ocean models with open boundary conditions are now being used in 
universities and laboratories in the U.S. and U.S.S.R. for the analysis of the MODE 
and POLYMODE data sets and for related dynamical process studies. These studies 
are also at the forefront of applied research for practical regional ocean forecasting 
which is of importance for naval operations and commercial purposes [ 161. 
Additionally, the results of these studies contribute to our understanding of the 
dispersal of tracer material naturally occuring in the ocean or present as a pollutant, 
such as that which could emanate from nuclear waste dumping sites [lo]. Such 
studies are also important in the oceanographic interpretation of satellite data and 
generally in the planning of observational strategies. Since this version of the model is 
the one that will be used for these scientific purposes, systematic quantitative deter- 
mination of modeling characteristics is necessary for proper interpretation of 
modeling results. The purpose of this study is to document the quantitative behavior 
of this model in parameter ranges of interest. 

Here we report in detail the testing and calibration of our baroclinic model, i.e., the 
establishment of the computational characteristics of the model as determined by its 
application to a series of idealized quasigeostrophic flow problems. Computational 
parameters were chosen to be consistent with our most detailed knowledge of actual 
conditions in the ocean. The characteristics of the baroclinic model are similar in 
broad outline to the barotropic results, but the quantitative differences reflect the 
inclusion of baroclinic physics. 

The problems we chose for the evaluation of model characteristics are predomi- 
nantly Rossby wave propagation with and without advection in the presence of 
stratification (imposed either as uniform or with an oceanically realistic structure). 
Since exact solutions for these waves are available, these provide the basis for the 
quantification of the computational error properties of the model. Finally, we present 
a test of the model for a flow field which is of the nonlinear and quasiturbulent type 
more characteristic of the real ocean; this problem involves a test region embedded in 
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a larger simulated flow according to the strategy presented in [22]. These results 
establish the model as efficient and feasible for application to real ocean mesoscale 
studies, and the accuracy characteristics tabulated provide the basis for initial choices 
of computational parameters in such studies. 

The matrix of tests performed for the calibration of the baroclinic model is shown 
in Table Ii-Iii. Runs 1-17 in Table Ii show the comparison between two methods of 
treating the depth dependence of the flow; a finite difference method and a collocation 
method. The methods are compared at low and moderate levels of nonlinearity 
(details below), with lateral resolution fixed and stratification parameters held 
constant at values typical of the main thermocline. Rossby waves with and without 
advection for two different propagation directions are used as examples to test two 
methods. Our tests show that the tinite difference method required more vertical 
resolution than the collocation method to achieve comparable accuracy, and the 
disparity in computational efficiency becomes greater at higher baroclinic modes. 
Runs 18-28 in Table Iii show the results of a series of Rossby wave tests designed to 
investigate the capabilties of the model in parameter ranges appropriate to real ocean 
data. Vertical stratification structure is taken from the MODE data [15]. Rossby 
wave parameters are chosen to simulate the magnitude of the nonlinear terms in real 
data. Lateral resolution is held constant at a level determined by earlier experience 
[8,22]. Temporal resolution was varied in order to determine error control and 
stability requirements in several flow regimes. Finally, runs 29 and 30 show the 
preliminary results from the construction of a model forecast data set from the four 
best tit Rossby waves to the MODE-I data [ 13,221. In the earlier barotropic data set, 
the two barotropic waves from the MODE tit are used to initialize the model on a 
1000 x 1000 km domain, upon which a uniform 65 x 65 grid was imposed. The data 
set is then generated by the nonlinear interaction of these waves. The baroclinic data 
set is generated in analogous fashion on a domain of 5 km depth and of the same 
lateral extent and resolution as the barotropic simulated data set. The baroclinic 
simulation could not be stabilized with the one day time steps that were used in the 
barotropic simulation; six hour time steps, 256 steps per half period, were used in the 
baroclinic simulation. 

This data set will be used for testing and calibration of dynamical, statistical, and 
mixed statistical/dynamical forecasting techniques. Here we display a successful 
prototype baroclinic interior calculation similar to those reported in [22] using the 
interior 500 x 500 X 5 km region of the simulated data set to provide boundary and 
initial conditions for a computation using a 33 x 33 X 6 grid. Computations were 
performed on the GLAS Amdahl 470. On that machine, each step of our Rossby 
wave simulation on a 33 x 33 lateral grid requires approximately 4 second of CPU 
time per vertical level. 
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2. MODELING EQUATIONS AND METHODS 

2.1 The Quasigeostrophic Model 

As in the barotropic case, we nondimensionalize x, y, t, and w by d, d, (/Id)-‘, and 
(V,,d), respectively. The parameters d and V, represent characteristic length and 
velocity scales of the anticipated field of motion. The length scale d does not 
correspond to the basin size L. The nondimensional basin size x, = L/d is in general 
greater than one. Here p is the conventional linearized variation of planetary vorticity 
with latitude. We introduce the scale depth h,, which, in our simulations of real 
ocean conditions, represents the depth of the main thermocline. We use this depth to 
nondimensionalize the vertical coordinate z, measured positive upward. We 
distinguish h, from the total depth L,, though, in our first series of experiments, we 
choose the scale depth equal to the total depth. The nondimensional total depth of 
our model region is H = L,/h,, which is, in general, greater than one. In this scaling, 
we write the baroclinic quasigeostrophic model equation as follows: 

As in the barotropic model, E is the /I-Rossby number V,/j3d*. 
In this baroclinic formulation, we introduce the parameters T* and c which 

describe the stratification of our model region. These parameters are defined as 
follows: 

I-* =f;d*/(N;h;), 

where 

N, is a characteristic buoyancy frequency; 
fO is the coriolis parameter at the center of the basin; 
d and h, are as defined above; 
a(z) = Ni/N*(z), where N*(z) = -(glp,,)(+(z)/c?z) is the buoyancy frequency as 

a function of depth, pO is the mean density, and p(z) is the vertical profile of density 
averaged in time and in the horizontal. 

The quasigeostrophic streamfunction relates in the conventional way to the velocity 
components and the pressure: 

u=--WY, v=v/x, P = PC& w* 

The density anomaly 6, loosely referred to as the “temperature anomaly,” is given in 
terms of the quasigeostrophic streamfunction as 

6 = l-*cry, . 
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TABLE II” 

Response Frequency of a Shapiro Filter of Order n and Frequency m 

Frequency 1 

Order 

2 4 

Wavelength 
in gridpoint 

units 

I 0.0004 0.0000 0.0000 2 
0.5WO 0.7500 0.9375 4 
0.7500 0.9375 0.996 1 6 
0.9330 0.9955 1.0000 12 

2 0.0000 0.0000 0.0000 2 
0.2500 0.5625 0.8789 4 
0.5625 0.8789 0.9922 6 
0.8705 0.9910 1.0000 12 

4 0.0000 0.0000 0.0000 2 
0.0625 0.3164 0.7725 4 
0.3164 0.7725 0.9845 6 
0.7578 0.8922 0.9999 12 

10 O.OOW 0.0000 0.0000 2 
0.0010 0.0563 0.5245 4 
0.0563 0.5245 0.9616 6 
0.4999 0.9560 0.9998 12 

20 0.0000 0.0000 0.0000 2 
0.0000 0.0032 0.2751 4 
0.0032 0.275 1 0.9247 6 
0.2499 0.9140 0.9996 12 

’ Prepared with the help of Dr. Gene Hertel, Proteus Corporation. 

By R we represent the dissipation imposed upon the model in the forms of 
filtering and bottom friction. The filter is a Shapiro filter, as described in [22]. Such 
filtering can be viewed as an approximation of a partial differential operator which 
describes high-order lateral friction. For details, see Shapiro [23]. In our implemen- 
tation, we specify the filter by order (n), the nuber of iterations per application (m), 
and the number of time steps (p) between successive filter operations. A Shapiro 
filter of order n is equivalent to a lateral friction term proportional to V*” with the 
addition of cross terms. Thus a higher order filter is more highly scale selective (i.e., 
has a steeper response function in wave number space) than a lower order one. The 
response function is tabulated in Table II. As an example, FIL(4, 1, 2) is a fourth- 
order filter applied once every other time step. FIL(N, 1, 1) is Shapiro’s 1231 ideal 
Nth-order low pass filter. Bottom friction is included as a linear drag; as will be seen 
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below, in the discrete model it appears only in the deepest level. Parameterization of 
bottom drag is exactly as in [22, Eq. (4)]: 

for c, w at the lowest level. 

Here K is a dimensionless decay parameter. 
The above parameters define the physical model. We distinguish these from the 

computational parameter set introduced below which determines the numerical 
performance of the discretized version of the model. The open lateral boundary 
conditions are those specified by Charney et al. [4], i.e., streamfunction specified 
everywhere on the boundary and vorticity specified at inflow points. For the case of a 
flat bottom and horizontally constant temperature at the top, the vertical boundary 
conditions are given as: 

VIL I I = wz = 0. 
top bottOm 

The general vertical boundary conditions are given as follows, in terms of the vertical 
velocity w at the top and bottom: 

D D 
W top = z owz tOp’ Wbottom 

= Dt a” bottom’ 

Nonzero vertical velocities at top or bottom result in loss of uniformity of 
convergence of expansion (6), introduced in Section 2.2, of w and c in terms of flat 
bottom vertical modes; this complicates evaluation of component-by-component 
response in the collocation method, but presents no significant implementation 
problems in the finite difference method. 

Treatment of vertical boundary forcing has been described in detail elsewhere: the 
methods described by Bretherton and Karweit [ 31 and by Flier1 [6] can be adapted 
to our model. It is important to recognize a basic difference between the open 
boundary problems of interest here and the case of a closed boundary. In the closed 
boundary problem, the complete relationship between the streamfunction values at 
adjacent levels of depth cannot be given explicitly by boundary conditions; rather, it 
must be determined in part by the imposition of internal physical constraints such as 
conservation of mass across each level. However, for the open boundary problem, the 
streamfunction must be specified at every point on the boundary, except only for a 
global additive constant which has no physical or computational significance. Care is 
required in the specification of the streamfunction on the boundary, since the vertical 
differences of the streamfunction are related to the buoyancy flux, but no implicit 
constraints are involved. Physically, the constraint for the closed adiabatic 
quasigeostrophic system involves boundary temperatures (buoyancy) being set 
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consistently by internal advection, whereas in the open case, externally advected 
values are specified. In the framework of the quasigeostrophic approximation, this 
amounts to the implicit requirement that U,, the first-order velocity term in Rossby 
number, be consistent with first-order conservation of mass. 

In our computational tests, we concentrate on Rossby waves. The Rossby waves 
we use are solutions of (1) and (2) with F = 0 of the form 

< = -( 1 + AT) sin(k . x - wt) Zj(z), (44 

w = sin(kx - wt) Z,(z) - w, (4b) 

k = (k, I); 

Zj is thejth normal modeSof the vertical operator in (2) with eigenvalue --A;. For any 
wave we wish to simulate, we can choose k* + 1* = 1, which is equivalent to choosing 
the scale length d so that one wavelength is equal to 271. With this scaling, 4a, 4b will 
be a solution of (1) and (2) if 

w = [-k/( 1 + A,‘)] + eky. (5) 

2.2 Discrete Model and Methods 

The basic strategy of the method used to solve (1) and (2) takes advantage of the 
fact that (1) contains all of the time derivatives while (2) contains all of the depth 
derivatives. The method currently employed uses bilinear finite elements in horizontal 
space and second-order Adams-Bashforth differencing in time; for details, see [8]. 
Given initial w and c fields, the Adams-Bashforth time discretization of Eq. (1) [8, 
Eq. (lob)] provides a method of calculating [ at the next time step. Since depth 
appears only as a parameter in (l), this prognostic calculation can proceed level-by- 
level barotropically. We then compute the streamfunction w by solving the Poisson- 
type equation (2), using the new value of [ as the right-hand side. We use the method 
of separation of variables to solve (2) as a sequence of uncoupled 2-D Helmholtz 
equations. This allows the use of available fast efficient codes [ 1 ] for the solution of 
such Helmholtz equations. The separation of variables process proceeds as follows: 
write 

V = T vifCx, Y, l) zi(z)7 C = 1 Qx, Y, t, zi(z)v 
I 

where Zi is the ith eigenfunction of the depth operator in 2, 

P@(z) Z!(z))’ = -LfZ,(z), 

z;(o) = Z((-kz) = 0, 

(74 
(7b) 
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and 1, corresponds to the reciprocal of the ith Rossby deformation radius. We 
normalize the Z, so that 

(l/H) ,r, Zj(Z) Z,(z) dz = sj,. 
For a solution of this form, (2) becomes 

V2& -A;& = $ (8) 

for integers i > 0. 
The lateral boundary conditions must, of course, be transformed in the same 

fashion. New values of w at each level are constructed from the qi to complete the 
time step. 

As in the earlier barotropic version of the model, the lateral boundary conditions 
are treated by using the dynamic equations to uncouple the boundary from the 
interior so they can be treated as separate algebraic entities. Details of this procedure 
can be found in [8]. 

The separation of variables procedure (6)-(s) has been implemented numerically in 
two ways: by a finite difference method and by a collocation method. In the finite 
difference method, the depth operator is replaced by a difference operator. This is 
exactly the level method as used in process studies by other investigators, e.g., [3]. 

The vertical structure of the model is given in Fig. 1. The levels at which v/ and 5 
are calculated are shown as dashed lines. In the finite difference model, the dimen- 
sionless stratification parameter u is given at levels shown as solid lines. In the 
collocation model, stratification data enters the calculation implicitly. 

FIG. 1. Structure of depth discretization of baroclinic model. 

581/50/l-4 
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2.2a. The Finite D@erence Model 

Let v/~(x, y, t) = ~(x, y, zj, t), where zj is the (dimensionless) vertical coordinate of 
thejth level. We write the finite difference operator as follows: 

-f/(Vl-W*)~r (94 
top 2 

O<j<N Pb) 

The hi are the level depths shown in Fig. 1. 
The variables uv, JtOp and uvZ Ibottom represent temperature anomaly distributions at 

the top and bottom boundaries which must be determined prognostically (by 
advection) except in the simplest cases studied here which correspond to uniform 
temperature surfaces. If we let w = (vi, v*,..., vN)T, we may write (9) in vector form: 

0 

W’z Ibottom 

(10) 

The eigenvalues -1: of L approximate the eigenvalues --At, i = 0, l,..., N - 1, of 
the continuous operator (a~,), with boundary conditions (7b) for an N-level model. 
Physically, li is the reciprocal of the ith internal deformation radius. Since the rows 
of L all sum to zero, 1: = ,li = 0 and thus the discrete system, like the continuous 
system, has a barotropic mode. However, for the baroclinic modes, the approximation 
--If to --A; deteriorates with increasing i. For fixed i, --If converges to -A: as the 
number of levels of N increases; but for any finite N, -1: will be a very poor approx- 
imation of --At for i z N. This can be illustrated with the simple example of a model 
depth structure with u = T* = 1, total depth = 71, and equally spaced levels. In this 
case, the eigenvalues of both the continuous operator and the finite difference approx- 
imation are known exactly. The comparison between the exact and approximate 
eigenvalues is shown in Table III. As the number of levels increases, -A: approaches 
1, as shown in row 2 of Table III. But looking down the column corresponding to the 
g-level simulation, we see the error increase from 1% for the first mode to 19% for 
the fourth. A 16-level example would show a marginally better value for --I:, and a 
considerably better value for -xi, but still the error in --I:, would be high. 
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TABLE III 

Comparison of Eigenvalues of Depth Operator with Finite Difference 
Approximation for Constant Stratification Parameter 

Eigenvalues of finite 
difference operator 

Mode 

Number of levels Eigenvalues 
of continuous 

2 4 8 operator 

0 (barotropic) 0 0 0 0 
I -2 -0.95 -0.99 -1 
2 -3.24 -3.80 -4 
3 -5.53 -8.01 -9 
4 -12.97 -16 

Note. Levels are equally spaced. Basin has total depth rc. 

TABLE IV 

Computational and Model Parameters for Rossby Wave Tests with Constant Stratification 

Variable Description 

Computational parameters 

N Number of lateral gridpoints/basic width, including 
endpoints 

” xd(N - 1)/L = number of gridpoints/half wavelength 
Al Dimensionless time step 
5 Ppdl(2At) number of time steps/half period 
K Linear, bottom drag coefficient, (scale time))’ 

Value” 

33 

9.4 

64-128 
0.016-0.032 

Regional parameters 

d Scale length 

P 
l/P 

0 Variation of stratification with depth 
X8 Dimensionless width of model basin 
P Dimensional period 
L Dimensional basin size 
LZ Dimensional total depth 

Total basin depth 
Coriolis parameter, MODE region 
Typical buoyancy frequency, main thermocline, 

MODE region (see MODE Atlas) 
(.foWoH)2 
Time scale 

47.75 km 
I 
7.05 X 10m4 set 
0.005 set ’ 

0.0181 
9.97 X 1O’sec 

~11.53 days 
1 
3.5n 

525 km 
5km 

’ Numerical values refer to the tests with constant stratification. 
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In the process of computing Rossby waves by the finite difference model, nf is 
replaced in dispersion relation (5) by I:, and the frequency (and hence the phase 
speed) of the waves will be in error for the baroclinic modes. This phase error is 
readily apparent in our finite difference test calculations. Lateral and temporal 
discretization also gives rise to errors in the dispersion relation. 

2.2b. The Collocation Model 
In the collocation scheme the exact eigenvalues and eigenvectors 4.: and Zi must 

be input to the model. In the case of constant 0, these are known exactly. In the 
general case of nontrivial dependence of Q upon z, 4: and Z, must be determined 
numerically by solving (7) on a fine grid. In this case, (5) is reproduced exactly, and 
there will be no phase error in the Rossby wave tests due to vertical discretization. 

2.2c. Computational Parameters 

A list of computational and model parameters appears in Table IV. That table 
contains definitions of each parameter along with relevant values for the tests shown 
in Table I. Horizontal and temporal resolution parameters were explored in [8]. Here 
we use horizontal resolution found to be adequate for Rossby waves in that study. 

3. RESULTS OF SINGLE ROSSBY WAVES WITH CONSTANT STRATIFICATION 

3.1 Choice of Wave Parameters 

In this series of experiments, single Rossby wave simulations were run in a model 
region 1.75 wavelengths square with stratification parameters chosen so that u in 
Eq. (2) is held constant. In all of these calculations a 33 x 33 lateral grid was used. 
This corresponds to approximately 10 points/half wavelength. The scale V,, is set 
implicitly by the choice of E. The scale depth is set to the total depth, rather than the 
thermocline depth in these simulations. As noted in Table IV, we have chosen to 
relate r, the temporal resolution of the model, in terms of the basic wave period. Since 
the period of a given wave depends on the mode number, the stratification, and the 
strength of the advection present, the actual time step At will vary from wave to wave 
for a given value of r. In this case of constant stratification, equally spaced .depth 
levels are the proper choice. In fact, with this choice one would expect the finite 
difference method to perform better than it would in a more realistic setting, since the 
finite difference operator with equally spaced levels is second-order accurate with 
constant o; in general it is only first-order accurate. 

In the case of varying stratification with depth, an argument similar to the 
derivation of the nodal positions for Gaussian quadrature (see, e.g., [9]) indicates 
that in an N-level collocation calculation the levels should be placed at the zeros of 
the Nth baroclinic mode. A heuristic justification for this procedure is that for this 
choice of levels, no aliasing error will result from the presence of the (unresolved) 
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Nth baroclinic mode. This formulation reduces to that of equal spacing for constant 
stratification, since in that case the modes are cosines. 

Calculations were performed for two values of the /3-Rossby number. The initial 
tests were performed with E = 0.4 as in several of the calculations shown in [S]. 
Though the value is low from a physical standpoint, it is large enough so that 
nonlinearity is dynamically significant. A moderate Rossby number, E = 1.5, was 
used in further tests. A very similar Rossby number (E = 1.48) was used in the 
barotropic forecast experiments reported in [22], and is also used in the generation of 
the simulated baroclinic data set. 

3.2 Weakly Nonlinear (E = 0.4) Rossby Wave Tests 

As noted in Section 2.2a, in the finite difference model, truncation error in the 
approximation to the depth operator gives rise to an inaccurate Rossby deformation 
radius. This is turn results in an error in the phase speed which in turn leads to a 
phase shift between the computed and analytic solutions. As the predicted field 

FIG. 2. Comparison of forecast streamfunction errors after one period. Clockwise from upper left: 
barotropic mode, maximum error = 0.013; first baroclinic mode, 2 levels, maximum error = 0.25; first 
baroclinic mode, 4 levels, maximum error = 0.082; first baroclinic mode, 8 levels, maximum error = 
0.023. The topmost level is displayed for the baroclinic calculations. Contours of linear phase error 
neglecting boundary interactions superimposed upon four- and eight-level maps. Solid lines in centers of 
patterns are crests. Dashed lines are nodes. Other solid lines are troughs. 
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evolves, it interacts nonlinearly with the analytically derived wave imposed at the 
boundary to produce small scale motions which modify the wave field and distort the 
structure of the predicted field. Figure 2 shows the error fields for the barotropic 
mode and the top level of the first baroclinic mode simulations for three choices of 
vertical resolution. The error fields shown correspond to finite difference runs 
numbered 14 in Table Ii. The error due to the phase shift alone, neglecting nonlinear 
effects and boundary effects, can be calculated directly. Contour lines of the error due 
to phase shift are shown superimposed on the four- and eight-level error fields in 
Fig. 2. The maxima of these error fields are 0.048 and 0.012, respectively. This 
illustrates the second-order convergence of the finite difference method with equal 
spacing. The most striking feature of the phase shift error fields is the coincidence of 
the crests, troughs, and nodes of the phase shift error with those of the total error in 
the interior. In the light of this, the error fields appear to be a combination of phase 
shift errors and box modes arising from boundary errors in the barotropic 
calculations. The barotropic calculation also contributes some phase shift due to 
lateral and temporal truncation error. In the eight-level simulation, the maximum 
error is approximately the sum of the maximum errors of the barotropic error field 
and the phase shift error, and thus these two sources account for all of the error 
amplitude. 

Therefore, for the waves studied here, we conclude that eight levels are required in 
the finite difference simulation to achieve error control comparable to that in the 
barotropic code, i.e., to control the error to be of the same size as that associated 
with our choice of horizontal resolution. In the collocation tests at E = 0.4 for 
baroclinic modes 1-3, error control is comparable to that in the barotropic mode. 
The collocation runs numbered 2 and 3 show little difference in error between two- 
and four-level simulations. The two-level simulation has only a barotropic and first 
baroclinic mode. 

Although there are regions of the ocean where the energy of the flow is concen- 
trated in the barotropic and first baroclinic modes, these are known to be phenomena 
of interest that occur on finer vertical scales. In the MODE eddies, energy was 
concentrated in the barotropic and first baroclinic modes, but there were instances of 
higher modes in the data. In the POLYMODE data there are samples of high internal 
mode energies. Additionally, the ocean may transfer energy to higher vertical modes 
and dissipate it. In that case, forecasting requirements may dictate that the model 
reproduce this process. Finally, from a strictly computational viewpoint, we believe 
higher resolution of nonlinear flows may be necessary in order to represent multiple 
nonlinear interaction correctly. 

In the analytic case of Rossby waves without advection, the nonlinear term of (1) 
vanishes identically and the nonlinear term in the numerical calculation consists 
exclusively of interaction between the calculated field and the analytic solution 
imposed at the boundary. When advection is imposed upon the wave field, the 
interaction between the wave field and the mean flow gives rise to a nontrivial 
nonlinear term from the beginning of the simulation. The fact that the form of the 
nonlinear interaction between the mean flow and the wave field is known explicitly 
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FIG. 3. Rossby waves with advection. Streamfunction fields and their associated error fields. Wave 
field similar to that shown in Fig. 1 but with mean eastward advection = 0.5 added (run 7 in Table Ii). 
Streamfunction amplitude normalized to one. Parts a, b: top level of two-level simulation; streamfunction 
and error field, respectively; maximum absolute error = 0.31. Parts c, d: top level of four-level 
simulation: maximum absolute error = 0.10. Normalized RMS error = 0.034. 

means that an advected Rossby wave simulation can be designed in which the 
nonlinearity has any desired strength. We will exploit this in Section 4. 

The simulations in which we impose advection on the Rossby wave field are thus a 
step closer to nonlinear reality. Figures 3 and 4 illustrate the results of a finite 
difference test in which the wave shown in Fig. 2 is subject to a eastward advection 
speed = 0.5 in the scale of the problem (~2 cm/set). Two- and four-level simulations 
are compared. After a full period, 11.69 of scale time, these simulations show the 
characteristic Rossby wave pattern. Referring to Table IV, this corresponds to 135 
days in dimensional time. The error fields reflect the structure of a phase error, with 
some box mode structure appearing from the difference in phase between the driving 
(boundary) field and the interior wave field. The vorticity error fields, as one might 
expect, show liner structure. The appearance of finer structure in the vorticity error of 
the four-level simulation (Fig. 4d) reflects the fact that fine structures may represent a 
larger portion of the error field shown in Fig. 4d, even though they may be of smaller 
absolute amplitude. Care should be taken in the interpretation of maps such as these 
with differing contour intervals. 
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C 

FIG. 4. Rossby waves with advection. Vorticity fields and their associated error fields. Same 
experiment as Fig. 3. Parts a, b: top level of two-level simulation; vorticity and error field respectively; 
maximum absolute error = 0.35. Parts c, d: top level of four-level simulation; vorticity and error field, 
respectively; maximum absolute error = 0.12. 

The analogous simulation by the collocation method is so accurate (0.3% w, 
2.6% [ after two periods) that the plots are not of great interest. In these cases, i.e., 
Rossby waves at low Rossby number with and without advection, the collocation 
method is considerably more efficient. Since the difference in actual computation 
between the finite difference and collocation methods lies entirely in the represen- 
tation of the eigenvalues and eigenvectors of the depth operator, the two methods 
require the same amount of computer time per time step. These tests alone, however, 
are not sufficient to rule out the finite difference method generally on the grounds of 
computational ineffkiency despite their comparative disadvantage here. Rossby 
waves are an exact solution to the algebraic equations that determine the 
computational collocation method, and thus the collocation method is expected to 
perform better in these tests. Since the error can be controlled at the 10% level in a 
finite difference calculation of this length, the finite difference method remains a prac- 
tical tool. Its performance relative to the collocation may improve in other situations 
and it also has the important advantage of more straightforward implementation for 
the cases of nonconstant surface temperatures and nonhorizontal boundaries. 

In the simulations shown in Figs. 2-4, there is no dissipation, and noise arising 
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from computational errors, including near gridscale features, is permitted to 
accumulate. For this reason, dissipation free computations do not in general remain 
well behaved over integrations several periods in duration. The problem becomes 
more severe in high baroclinic mode finite difference calculations. If the model is 
driven from the boundary with the analytic solution for a high baroclinic mode 
Rossby wave, truncation error in the vertical grid will produce a phase error in the 
interior, as noted in Section 2. The phase difference between the interior field and the 
boundary data produces by nonlinear interaction a rapid accumulation of small scale 
features near the boundary. 

As in [22], we chose to impose dissipation in the form of a scale selective filter. 
Details of the use of this method on the barotropic version of the forecast model may 
be found in [22]. The fourth-order filter that had been successful with the barotropic 
model provided insufficient dissipation for the third mode finite difference test run 
with our chosen parameters. It is clear from Eq. (9) that higher baroclinic mode 
waves have lower frequencies. Therefore, if the number of time steps per period is 
held constant, the time step will increase. In the case of the four-level third baroclinic 
mode finite difference simulation, the calculation could not be stabilized with a time 
resolution r = 64. With temporal resolution of r = 128 and a second-order Shapiro 
filter applied every time step, the third baroclinic mode four-level simulation ran 
stably for two periods, albeit with large errors. The third mode has a considerably 
lower frequency than the barotropic and first baroclinic mode, and thus r = 64 
implies a longer time step (dt) for this run than for runs l-l 1. Spurious barotropic 
and low baroclinic mode disturbances are thus poorly resolved. The fact that run 
number 12FD with r = 128 ran successfully, while a similar run with r = 64 became 
unstable very quickly is evidence that the latter run failed due to violation of a CFL 
condition. This was not uncommon in our experience with the model. 

Accurate reproduction of second and third baroclinic modes is not possible with a 
four-level finite difference simulation, as runs 9 and 12 demonstrate. However, with 
appropriate filtering and time resolution, finite difference calculations can proceed 
without catastrophic instability caused by high baroclinic mode disturbances. Vertical 
filtering (or equivalently damping higher modes) offers some hope for further 
stabilization of such calculations. This was not used in the present series of tests. To 
interpret the horizontal filtering, note that [23] a Shapiro filter of order n is, except 
for cross terms, equivalent to a V’” operation. 

3.3 Moderately Nonlinear (E = 1.5) Rossby Wave Tests 
with Constant Stratification 

In the next series of tests, E was set to 1.5. The advected wave tests were run with 
mean flow = 0.2. Only the first baroclinic mode was simulated. Lateral dissipation 
in the form of a second-order Shapiro filter was imposed at varying time intervals. In 
some of the runs, bottom friction was imposed with coefficients 0.016 or 0.032. These 
values correspond to spin-down times of 62.5 and 31.25, respectively. The dimen- 



56 MILLER, ROBINSON, AND HAIDVOGEL 

sionless wave period in these simulations is 13.8 in the calculations with advection 
and 8.9 in the calculations without advection. All other computational parameters 
were held constant. Since E and y influence the period of the advected waves, the 
actual time steps differed from the lower Rossby number simulations because of our 
adopted convention of fixing the time resolution in terms of the wave period. In this 
series of tests (runs 13-17) t, the number of time steps/half period, was fixed at 64. 

In the tests of the finite difference method for E = 1.5, the errors, as expected, were 
somewhat larger than they were in the low Rossby number case, but could still be 
controlled near lOoh for two periods. The first baroclinic mode simulation without 
advection (run 13 in Table Ii) ran to completion with no filtering or bottom friction 
and RMS streamfunction errors between 9.5 % and 16 % (for the third and first levels, 
respectively) after two full periods. It was clear from this run that dissipation-free 
calculation could not proceed much further in this case. During the time interval from 
l$ to 2 ‘periods, the maximum velocity in the top layer went from 1.0, which is 
normal, to 4.3, while the energy approximately doubled. Computation of a flow with 
this high velocity will be subject to a stricter CFL condition than the original flow. 

We note here that in this run energy fluxes from the boundary may occur due to 
the disparity between the analytic and numerical solutions. We anticipate the 
simulation of real flows in which energetic structures enter the computational domain 
through the boundaries, causing rapid increase in the total energy of the field. In 
either of these cases, the generalization that more energetic flows are subject to more 
stringent stability conditions holds. 

32 64 96 128 160 192 224 
(I period) 

TIME (steps) 

(b) 

STEPS - 

FIG. 5. RMS streamfunction error vs. time. Value normalized by RMS of exact field; E = 1.5, 
advection = 0.2, angle of propagation = 0.5932 radians from due east. Part a: top level of four-level 
simulation. Part b: bottom level of four-level simulation. 
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FIG. 6. RMS vorticity error vs. time. Values normalized by RMS of exact field. Parameters as in 
Fig. 5. Part a: top level of four-level simulation. Part b: bottom level of four-level simulation. 

Violation of such a condition is probably the immediate cause of failure in most 
such situations, as in the failure of a run similar to 12 with r = 64, noted in the 
preceding section. The summarized results of our tests of advected Rossby waves 
with Rossby number 1.5 are shown in Table Ii, examples 14-17, and Figs. 5-9. 

Figures 5 and 6 show the evolution of RMS streamfunction errors and vorticity 
errors as functions of time at the top and bottom levels. The errors are consistently 
higher in the top level than in the bottom level for runs 15 (finite difference) and 16 
(collocation). These were the runs with bottom friction in which one expects 
increased errors because the parameters of the wave imposed at the boundary 
represent a dissipation-free solution to (1) and (2). Without bottom friction, there is 
little difference between top and bottom, as one would expect in a constant 
stratification run. Runs 17, the runs with the least dissipation, were the best 
performers in the finite difference and collocation cases. The improvement in perfor- 
mance was more marked in the collocation than in the finite difference case; in fact, 
at the third level, run 14FD finished with a slightly lower RMS vorticity than run 
17FD. The energy errors (Fig. 7) exhibit a similar pattern. As expected, the runs with 
bottom friction show greater energy errors at the bottom level than at the top, while 
there is less difference in the runs without friction. The collocation runs show consis- 
tently less energy than the finite difference runs. Finite difference runs 14 and 17 are 
the only runs to show a positive energy error. 

Since the runs in this series with the least filtering are the most accurate, one is 
tempted to try still weaker filtering. Some filtering, however, is necessary. With no 
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32 64 96 128 160 192 224 256 
TIME-- 

FIG. 7. Normalized RMS energy error vs. time. Part a: top level of four-level simulation. Part b: 
bottom level of four-level simulation. 

MIN.-202120 MIX*202120 CI*OO6000 YIN .-I22450 MAX .I26040 Cl*030000 

b 

IN .-037200 MAX *017560 C1~006000 IIN -0 28510 MAX .0.41340 Cl 40t001 

FIG. 8. Nonlinear Rossby wave fields for level I of run I4 (collocation) following 2 periods. 
Clockwise from upper left: streamfunction, vorticity, vorticity error, streamfunction error. 
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MIN ~-147410 MAX : I 47410 CI .O 30000 
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FIG. 9. Nonlinear Rossby wave fields for level 3 of run 14 (collocation), following 2 periods. 
Clockwise from upper left: streamfunction, vorticity, vorticity error, streamfunction error. 

filter or bottom friction and other parameters as in 14-17, the collocation calculation 
becomes unstable in less than one half period. 

Figures 8 and 9 show streamfunctions, vorticity, and associated error fields for 
collocation run 14 at the first and third levels after two periods. The streamfunction 
fields show the correct structure, while the vorticity fields have taken on a distinct 
waviness. The errors appear to be dominated by box modes, indicating the dominance 
of boundary effects in the error field. Some phase shift error is also apparent at the 
top level. 

The third level vorticity error is concentrated in the low in the lower left quadrant 
and in the high in the upper left quadrant. That intense low (error extremes are -0.3 
and 0.2; field amplitude = 0.5, both positive and negative directions; normalized 
RMS error at this level = 0.23) corresponds to the waviness of the field in the lower 
left quadrant. Streamfunction errors are more uniformly distributed at both levels, as 
one would expect. 

On the basis of these results, we choose the collocation method for our tests of the 
model with realistic stratification. These are presented in the next section. 

SSl/SO/l-5 
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4. ADVECTED ROSSBY WAVES IN A REALISTICALLY 

STRATIFIED ENVIRONMENT 

As a further evaluation of the capability of our model to deal with nonlinear 
problems in realistic parameter ranges, we present a series of advected baroclinic 
Rossby wave calculations in a realistically stratified environment. Stratification data 
were taken from [ 191. 

Baroclinic modes were calculated by solving (4) numerically on a 36-point mesh. 
The barotropic and first three baroclinic modes are shown in Fig. 10. Several 
combinations of level depths were used in our tests. Most of the tests were run with 
levels set at 100, 400, 700, and 1400 meters. These are the depths at which data is 
available from USSR POLYMODE current meter array [20] which provided the first 
real ocean baroclinic data set to be used with this model. Optimal choices of levels 
(see Section 3a for definition of “optimal”) were also used for four- and six-level 
calculations. Second-order Shapiro filtering was imposed at an interval of either one 
day or one half day. 

The parameters in these simulations were chosen to mimic wave/wave and wave/ 
mean flow interactions as faithfully as possible within the capabilities of this simple 
analytical example. The first baroclinic mode waves were chosen in each case. In the 
case of a Rossby wave with zonal wave number k, in a regime with P-Rossby number 
E in the presence of a zonal mean flow with amplitude y, the nonlinear term in the 
equation has magnitude &ICY. With the propagation vector at an angle of 0.5932 
radians (0 = due East; this was the heading of the dominant baroclinic wave in the 
MODE fit [13]), E and y are chosen to reflect different parameter ranges found in the 
field; a slower or larger scale wave interaction was modeled as a zonal flow 
advection. The results of these tests are summarized in Table Iii, runs 18-28. 

These calculations’were intended to run for sixty days of model time. Stable runs 
of that duration could not be made for two of the wave parameter choices with a time 
step of one day, which was the time step for the barotropic simulated data set. The 
case of E = 1.5 and y = 4 became unstable after 20 days of model time with time step 
set at a half day. It is clear in this case that the time resolution is very coarse, at 

DEPTH -+ 
5km 

FIG. 10. Barotropic and first three baroclinic modes of depth operator with realistic stratification. 
Functions normalized so the mean square amplitude over the total depth is one. 
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FIG. 11. Nonlinear Rossby wave fields for level 1 of run 23 after 60 days of model time. Clockwise 
from upper left: streamfunction, vorticity, vorticity error, streamfunction error. 

t = 15.7. Run number 28 differs from run number 27 only in time resolution. The 
filter frequency in run 28 was two, so the time interval between successive filtrations 
remains the same in the two runs. 

Figure 11 shows contour plots of streamfunction and vorticity and their associated 
errors for run number 23 after 60 days of model time. These plots show a typical 
well-behaved calculation. Both the streamfunction and vorticity fields have their 
structure intact, with no identifiable spurious features. The ranges of streamfunction 
and vorticity are essentially identical to the initial ones. The error fields are very 
smooth. The maximum streamfunction error is 0.03, or approximately 1% of the 
amplitude of the field including the mean flow, and 3% of the amplitude of the wave 
disturbance alone. The maximum vorticity error is less than 10% of the vorticity field 
maximum. 

Figure 12 shows the streamfunction, vorticity, and associated error fields at the 
700 meter level of run number 25 after 60 days of model time. The basic wave 
structure appears intact except for a slight irregularity in the vorticity field in the 
lower left corner at the error maximum. This vorticity error maximum is a rather 
strong one, with amplitude 0.08, compared to the predicted field maximum of 0.51. 
The RMS vorticity error (normalized by the RMS field amplitude) is 0.052, less than 
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FIG. 12. Nonlinear Rossby wave fields for level 3 of run 25 after 60 days of model time. Clockwise 
from upper left: streamfunction, vorticity, vorticity error, streamfunction error. 

a third of the ratio of the peak error to the peak field amplitude. This reflects the 
overall nonuniformity of the error field, i.e., the concentration of error near the 
maximum. The peak in the vorticity error distribution may be related to the fact that 
there are two boundary points near the lower left corner where the flow is tangent to 
the boundary. 

Bennett and Kloeden [2] have suggested that the problem specified by Eqs. (1) and 
(2) with open boundary conditions and no dissipation may be ill posed in the 
classical sense because of ambiguities arising at points where the flow is tangent to 
the boundary. The original calculation in [4] which uses this boundary condition was 
done on a nonsimply-connected domain, in which such points need not arise. In our 
experience with this model we have encountered many instances in which the error 
field was dominated by structures occurring near such points. There are, on the other 
hand, instances where no apparent trouble arises near these points. In that same 
Fig. 12, there is a tangent point at the top edge near the upper left corner that is not 
associated with any obvious irregularity in the field. In this calculation, the temporal 
resolution of the wave field is so fine that the calculation will run stably for 60 days 
with time steps of one day. The errors are controlled at the levels shown in Table Iii 
by filtering with the parameters shown. 
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IL- 
MIN ~-2021190 MAX*20 21190 CI*500000 

MIN.-2021360 MAX-2020900 CIn500000 

Li I 
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FIG. 13. Evolution of streamfunction (left) and vorticity (right) fields at 700 m from run 28 (see 
Table I). Top to bottom: initial field; 12 days; 60 days. 

Figure 13 shows the evolution of the streamfunction and vorticity fields for run 
number 28 from the initial distribution to 60 days of model time at the 700 meter 
level. Figure 14 shows the associated error fields at 12 and 60 days. Throughout the 
simulation, the streamfunction field is dominated by advection. This accounts for the 
extremely small streamfunction errors, since the error statistics are normalized by the 
RMS amplitude of the streamfunction field. At 12 days, however, the vorticity field is 
significantly modified by concentrations of vorticity forming at the edges. The 
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1111~-0.00510 YAI~O.00520 c1~000120 MIN.-O26180 MAX*021220 Cl*005000 

FIG. 14. Error maps of streamfunction and vorticity fields at 700 m from run 28. Top: 12 days; 
bottom: 60 days. 

concentration of contours near eddy maxima indicates that the error field is uniform 
and relatively small in the interior, considering the contour interval of 0.05. At 60 
days (5.19 scale time units) the vorticity field appears to be dominated by the error 
vortex at the lower right corner, but the interior field is relatively undisturbed. 

The change in appearance of the vorticity field from 12 to 60 days is due to the 
contouring. Because the same number of contour intervals is used in all of Figs. 13 
and 14, the contour intervals are greater in the 60-day field than in the initial and 12- 
day fields. The interior of the 60-day field is thus similar to the interior of the initial 
field, but not so well resolved by this choice of contour levels. The major features in 
the 60-day fields are structures which form near the boundary. The location of these 
structures is consistent with the hypothesis [ 2] that difficulties arise near points where 
flow is tangent to the boundary. As in the case of run 25 discussed above, [2] does 
not account completely for the phenomena encountered here. In particular, the 
occurrence of local error maxima near some of these tangent points but not near 
others remains unexplained. 

Runs 19-22 show the characteristics of changing vertical resolution. The 
“optimal” levels referred to above are optimal in the sense of being the best points at 
which to sample a distribution containing many modes. In this case, where the profile 
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contains only one mode, and a rather well-resolved one at that, one does not expect a 
great deal of improvement. In fact, the four-level optimal spacing (run 20) does not 
represent a drastic improvement over run 19, from which it differs only in vertical 
spacing. The only significant improvement is in the maximum vorticity error. Run 21, 
the analogous six-level simulation, shows no improvement over run 20. Run 22 is the 
best run with these field parameters, differing only in frequency of filtering from run 
21. Our experience with the constant stratification case is thus repeated: the run with 
the least filtering consistent with stability will be the run with the least error. 

The large difference between minimum and maximum level-by-level RMS stream- 
function and vorticity errors in this and several other runs may be a feature of the 
normalization. If the basic field is dominated by the first baroclinic mode, then it will 
be weakest at level 4 of a simulation with levels at 100, 400, 700, and 1400 meters. 
Since these errors are normalized by the RMS field amplitude at each level, the 
normalization factor is smallest where the vorticity is weakest, and therefore a 
barotropic disturbance in the vorticity field would appear largest at the 1400 meter 
level. 

5. A PROTOTYPE BAROCLINIC SIMULATION CALCULATION 

The results in 1221 were intended as a preliminary study for the construction and 
evaluation of a baroclinic forecast model (see the conclusion section of that work). 
We present in this section a preliminary baroclinic calculation to show the feasibility 
of such a baroclinic simulated data study. As in [22], we adopt an “embedding” 
strategy in which an exterior numerical calculation is performed in a double-sized 
computational domain (65 x 65 x 6; 1000 km square by 5 km deep) to provide initial 
boundary and verification data for a forecast calculation over a smaller interior 
region (33 x 33 x 6 gridpoints; 500 km square by 5 km deep). Initial and boundary 
conditions for the exterior calculation were provided by the four Rossby waves found 
in [ 131 to be the best fit to the MODE data. Two of these four waves were 
barotropic, and the other two were first baroclinic mode waves. Only the two 
barotropic waves were used in the creation of the barotropic simulated data set. 
Stratification information was taken from (151 which is essentially identical to that 
given in [ 191. Levels were chosen empirically by testing the capacity of various 
choices of levels to reconstruct several trial waveforms containing more than four 
modes. Time steps were set so that the highest frequency wave was resolved with 
r = 256. This is much finer than the temporal resolution used in the experiments 
described in [22]. The wave used for temporal normalization is the same as that used 
in [22] since the highest frequency MODE wave is barotropic. Other parameters are 
given in Table Iii, run 20. This choice of time resolution corresponds to a time step of 
approximately six hours. 

Figure 15 shows the streamfunction and vorticity fields and their respective 
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FIG. 15. Generation of baroclinic simulated data set by nonlinear evolution from initial condition of 
best-fit Rossby wave field to the MODE-I data. Parts a, b: streamfunction and vorticity, respectively, at 
750 meters after approximately 2 years. Parts c, d: deviation from linearity of above fields, respectively. 
Field is 1000 km square. Boxes drawn in parts a and b represent interior domains for forecasts shown in 
Fig. 16. Level = 3. 

deviations from the linear driving fields for the exterior calculation at the 1600 meter 
level after 5.5 periods of model time. At this point the simulation has reached 
statistical equilibrium, and the eddy structure characteristic of the nonlinear 
simulation is well developed (see [22, Fig. 41). The prototype forecast experiment 
began at day 640 and ended at day 704. Some of the results of that experiment are 
shown in Fig. 16. The “exact streamfunction” comes from the exterior calculation; it 
is precisely an enlargement of the inner box in the upper left corner of Fig. 15. The 
forecast and verification fields are indistinguishable by eye. The error map, as 
expected, shows the errors concentrated near the boundary. The normalized RMS 
streamfunction and vorticity errors are 7 % and 15 % at this level at this time. This 
calculation corresponds to a benchmark calculation [22]. In that calculation, after 64 
days the error was approximately 1.1%. The difference stems from the inclusion of 
baroclinic processes in the model. In this calculation, we can see the ability of this 
model to function in a realistic environment. 
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MIN= -23.86500 MAX=IO.43450 Cl=403333 
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FIG. 16. Interior forecast field using interior 500 km square of simulation as initial boundary and 
verification data. Interior prediction begins approximately a year and 10 months into the simulation. 
Figure shown corresponds to the inner box in Fig. 15 approximately 2 years from the beginning of the 
exterior simulation. Level 3 is at 750 meters; the RMS error is 7% in streamfunction. a: forecast stream- 
function. b: exact streamfunction. c: error in forecast streamfunction. d: forecast vorticity held. 

6. SUMMARY AND CONCLUSIONS 

The purpose of this paper is to present and document our baroclinic 
quasigeostrophic open ocean model and to calibrate its accuracy and stability charac- 
teristics. The test results presented demonstrate the possibility of doing such 
baroclinic open ocean calculations, their efficiency, and the feasibility of scientific use 
of models. The results depend on the qualitative character of the flow fields; for each 
problem type, tests were carried out over ranges of physical and computational 
parameters. Real quasiturbulent mid-ocean mesoscale flows of interest were 
aproached via a preliminary study of a set of idealized problems for which the choice 
of parameter ranges was guided by the nonlinear flows of ultimate concern. Our 
general approach was guided by our experience with the barotropic model. 

We began by choosing the horizontal resolution to be used with a given problem 
type which, once chosen, fixes an accuracy upper limit. We then considered temporal 
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resolution, which can run from the (relatively inaccurate) stability limit dictated by 
the CFL condition to matched accuracy with the horizontal resolution and beyond 
(which is inefficient). Instances were encountered in which the error field was 
dominated by a localized feature whose growth could be controlled by increasing 
temporal resolution. Next the accuracy as a function of vertical resolution was 
carefully explored. Baroclinic effects give rise to new kinds of errors, including, of 
course, some which have scales and structure different from the physical fields them- 
selves. The evaluation of model performance as a function of vertical resolution 
included the use of two vertical models, each of which was to some extent calibrated 
and intercompared. 

The detailed and complete listing of results is in Tables Ii and Iii, and the 
discussion of results is found in paragraphs 5, 8, and 14 of Section 3 and paragraphs 
5, 7, 9, and 10 of Section 4. The prototype simulation is discussed in Section 5. 

We began with studies of Rossby waves, first for the case of constant stratification 
(typical of the main thermocline). Weakly nonlinear examples were run first. The first 
set of problems was run with a small Rossby number (E = 0.4). For Rossby waves 
with no advection, E measures the nonlinear interactions of the error field; with 
advection parameter y, EY also measures the magnitude of the linearized advection. 
Care must be exercised in the interpretation of E in the baroclinic case, as amplitudes 
(and therefore effective Rossby numbers) vary with depth. 

We found that for a horizontal resolution of 10 intervals per half wavelength and a 
time resolution of 32 intervals per half period, our finite difference method required 
eight levels (per half wavelength) to achieve accuracy comparable to the barotropic 
mode (- 1% period). This was the first baroclinic mode with and without advection. 
A two-mode collocation run achieved the same accuracy with run time equal to that 
for a two-level finite difference run. With four levels, the finite difference model 
required time resolution of 128 steps per half period and second-order Shapiro 
filtering every step to complete a run of two full periods of the third baroclinic mode. 
The accuracy of this run was poor; the object was to show that the finite difference 
model could make such a computation in a stable fashion. A collocation model with 
four modes performed the same calculation accurately with half the temporal 
resolution and no filtering. Reasons for this are discussed in detail in Section 2.2b; 
essentially, the relative efficiency and low vertical resolution required by the 
collocation scheme for fixed accuracy is attributable to the fact that the Rossby 
modes are identically the collocation modes; for more general problems, the relative 
accuracy is moot. 

The next series of tests was also run with constant stratification, but with moderate 
(E = 1.5) Rossby number. Care is required in the interpretation of E as a parameter 
characterizing the nonlinearity of a baroclinic run because of the variation of 
amplitudes with depth associated with the baroclinicity. In those runs, with advection 
(y = 0.2), the error could be controlled by suitable choice of filtering at the 10% level 
for a two-period calculation with the collocation method (4 modes) and at the 15 % 
level with the finite difference method (4 levels); the corresponding errors respectively 
at e=0.4 were 1% and 8%. 



A BAROCLINIC OPEN OCEAN MODEL 69 

The next series of Rossby wave tests was performed with realistic stratification. 
The collocation method was used because of its superior performance in the previous 
series. Three different flow regimes were chosen, each of which was designed to 
emulate some instance of wave/wave or wave/mean flow interaction observed in the 
real ocean. The three choices can be interpreted as (i) wave propagation with weak 
advection and a strong measure of nonlinearity (E = 6, y = 0.01); (ii) an advected 
wave with nonlinearity (E = 4, y = 0.5); and (iii) a strong current dominating the flow 
field in the presence of moderate nonlinearity (E = 1.5; y = 4). 

For case (i), the streamfunction error was 23% after 60 days of model time with 
half-day time steps, a very line temporal resolution of 239 steps per half period. In 
the other extreme case (iii) of a field dominated by advection, the strong Doppler 
shift necessitates a quarter-day time step for a time resolution of 31 steps per half 
period of the shifted wave. This result implies that in the nonlinear quasiturbulent 
fields of real interest, the advection by larger scale components of smaller scale ones 
will be the limiting factor for the choice of temporal resolution. Our simulations 
appear to bear this out. 

In the intermediate case (ii), error control at the 1% level in streamfunction and 
5% in vorticity after 60 days is achieved with half-day time steps and four levels. 
These results are not highly sensitive to choice of vertical collocation depths. 

Finally, a preliminary calculation in an oceanically realistic quasiturbulent regime 
is presented using embedding, the strategy developed in the barotropic experiments. 
This prototype regional forecast calculation runs for 60 days with 7% streamfunction 
error at the end, demonstrating the ability of the model to run accurately and 
efficiently in such a flow regime. 

During our tests, some evidence was observed for error growth of the type which 
might be interpreted by Bennett and Kloeden’s [2] proposed mechanism at points of 
tangential boundary flow. However, in most instances of tangential boundary flow, 
no localized error growth was observed. In those cases where it did appear, it could 
be reduced and controlled by adjustment of the computational and filter parameters. 

The finite difference model is easy to implement and offers straightforward 
implementation of vertical forcing. It has not, however, performed as accurately or 
efficiently as the collocation method in this series of tests. 

The collocation method performed consistently more accurately and efficiently 
than the finite difference method. Choice of vertical levels and evaluation of perfor- 
mance as a function of vertical resolution is less straightforward, as is implemen- 
tation of vertical forcing. 

The baroclinic model has now been tested and validated in the parameter range 
appropriate for studies on mesoscale ocean data. Preliminary calculations indicate the 
feasibility of using the model for forecast studies. Such forecast studies using real and 
simulated data now form a major part of the authors’ current research effort. Other 
laboratories currently use this model in a variety of military and civilian applications. 
The quantitative results presented here are intended as background for critical 
analysis of results obtained from the model. 
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